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Real-time quantum Monte Carlo (QMC) methods have been used to study diffusion on a one-
dimensional tight-binding lattice in a dissipative environment with Ohmic friction. For this system,
the inherent sign problem of real-time QMC methods can be substantially reduced by employing a
partial summation scheme, allowing direct calculations of long-time transport properties. At very
low temperatures, the system undergoes a transition from a coherent transport mechanism to an
incoherent mechanism as the Kondo parameter K goes through 1. For 0 < K < 1, perturbation
theory which predicts a T?X~! power-law temperature dependence for the diffusion coefficient D is
grossly incorrect for low temperatures. Instead, D(T — 0) = 0 for 0 < K < 1, and with increasing
temperature D goes through a pronounced maximum. This maximum disappears for K > 1 and D

2

increases monotonically with increasing temperature. For all K < 1, perturbation theory becomes
exact at sufficiently high temperatures, indicating that the transport mechanism eventually becomes
incoherent. For K > 1, perturbation theory is exact for all temperatures, and transport is always

incoherent.

PACS number(s): 05.30.—d, 03.65.Bz, 73.40.Gk

I. INTRODUCTION

The study of tunneling dynamics of quantum systems
in condensed phase is important in many areas of physics
and chemistry. In these systems, to correctly describe
the dissipative effects of the condensed phase environ-
ment, a heat bath has to be included, which severely
limits the usefulness of conventional quantum-mechanical
methods such as basis-set techniques. A powerful alter-
native for dealing with these open quantum systems is
the path-integral approach of Feynman [1]. Making use
of Feynman path integrals, Caldeira and Leggett [2] con-
structed models of open quantum systems representing
the bath as an infinite collection of harmonic oscillators
which are then allowed to couple to the quantum sys-
tem linearly. Because of the linear system-bath coupling
and the harmonic nature of the bath modes, the entire
bath can be traced out according to the influence func-
tional method of Feynman and Vernon [3], leaving an
effectively one-dimensional system dressed with nonlocal
self-interactions.

Many path-integral studies of condensed phase tunnel-
ing systems focused on the dissipative two-level system
commonly known as the spin-boson model [4] first used
to describe the motion of magnetic flux in rf supercon-
ducting quantum interference devices. Interestingly, the
same spin-boson model has found wide applications to
many other areas of physics and chemistry. To men-
tion two examples, it has been used to study tunneling
of charged particles coupled to conduction electrons in
a metal [5], as well as the electron tunneling rate con-
stant in many chemical and biological electron transfer
reactions [6]. In the past, we have studied many aspects
of the spin-boson model using real-time quantum Monte
Carlo (QMC) methods, incorporating a filtering scheme
for discrete-state systems which partially circumvents the
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sign problem inherent in all real-time path-integral calcu-
lations. These QMC methods carry out the path summa-
tion (after discretizing the action) in a stochastic manner,
and the sign problem arises because paths carrying differ-
ent phases interfere with each other. The filtering scheme
we have employed previously [7] simply steers the Monte
Carlo (MC) trajectory away from regions of destructive
interference, thereby making the path summation better
conditioned. In many cases these simulation techniques
have confirmed predictions of analytical theories, in par-
ticular, the noninteracting-blip approximation [4], and
in others they have provided detailed information about
the dynamics of the spin-boson model in many widely
differing regions of the parameter space [7-10].

In this paper, we will use a variant of the filtering
scheme to simulate tunneling transport on a dissipative
one-dimensional lattice with an infinite number of states.
From a computational point of view, the most significant
difference between the two-state and the multistate sys-
tem is the path space volume that needs to be sampled.
Because the number of paths grows with the number of
states N, like N7®), where v(t) is some linear function
of the real time ¢, the computational problem is much
more demanding for a multistate system compared to a
two-state system. However, this aspect of the problem
by itself is not the most detrimental, because the action
places constraints on the paths and effectively limits the
number of allowed paths to a much smaller set. Fur-
thermore, if the action is purely real valued, as in an
imaginary-time calculation, the path summation could
be carried out without much difficulty. The main prob-
lem arises when the weights of the paths are not positive
definite, as is required for computing dynamics. Our past
experience suggests that the severity of the sign problem
(measured by the magnitude of the noise compared to the
signal) grows exponentially with the effective size of path
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space [7]. Therefore, a moderate increase in the number
of states may lead to an entirely uncontrollable sign prob-
lem. However, we will show in this paper that efficient
methods can be constructed to circumvent the sign prob-
lem, allowing us to extract the diffusion coefficient, which
is an intrinsically long-time large-length-scale property,
from the multistate system. The calculation of the lin-
ear mobility using a similar QMC method has also been
addressed recently [11].

The model we are considering here is most relevant to
quantum effects in the current-voltage characteristics of
a small Josephson junction [12], but it can also serve as
an idealized model for the diffusion of a quantum particle
on the surface of a single-crystal or among interstitials in-
side a crystal [13,14], especially that of a charged particle
in a metal [5], or for electron or hole transport in a quan-
tum well structure within the one-band approximation
[15]. The same model can also be used to study electron
transfer in a charge-transport chain [16]. Finally, this
multistate system can be related to the Luttinger liquid
model for the conductance between two one-dimensional
quantum wires connected by a weak link via a formally
exact mapping [11].

The dissipative multistate system has been the
subject of intense studies during the past decade
[17-19,21,20,22-26]. Much of the physics of this model
has been unraveled by renormalization-group meth-
ods and by an extremely useful duality transformation
[17-19]. The duality links the (discrete) tight-binding
problem studied here to the (extended) weak corruga-
tion model describing a particle in a cosine potential
and thereby imposes some interesting constraints on the
transport quantities of both models. These calculations
showed that for zero temperature, the multistate sys-
tem undergoes a phase transition from a delocalized to
a self-trapped state. The dual weak corrugation model
has been studied by Fisher and Zwerger [19] with the
Feynman-Vernon technique. A similar treatment of the
weak corrugation model based on the Keldysh technique
has been given by Eckern and Pelzer [20]. Based on the
duality transformation and the results for the weak cor-
rugation model, Weiss et al. [21] have extracted much of
the qualitative behavior of the mobility and the diffusion
coefficient for the tight-binding model. We will rely heav-
ily on the analycial methods developed in Ref. [21] in this
work, which prove useful also in a numerical context.

The outline of this paper is as follows. In Sec. II, we
define the multistate model studied here. Section III dis-
cusses perturbation theory results for the multistate sys-
tem and its connection with the noninteracting-blip ap-
proximation. Section IV gives a description of the Monte
Carlo algorithm for computing the diffusion coefficient.
In Sec. V, we present QMC results and compare them to
perturbation theory. Some final analyses and conclusions
are given in Sec. V1. For completeness, the MC algorithm
for computing the mobility under an external bias is also
included in the Appendix.

II. THE DISSIPATIVE MULTISTATE MODEL

In this paper we consider a one-dimensional infinite
tight-binding lattice with the Hamiltonian

H=Hy+Hg+ H;. (2.1)

Here Hy is the Hamiltonian for the bare multistate sys-
tem

Hy = —(hA/2) Z(C}C-‘H“l + cj-ch) — heq ,

J

(2.2)

where ¢! creates a particle on site j, and € is an external

bias. The operator ¢ measures the position of the particle
on the lattice (in units of the lattice constant a)

q:Zjnja
J

where n; = c;cj is the number operator. Although
we have employed creation and annihilation operators
to define the multistate system, the commutation rela-
tionships for these operators are irrelevant here, since we
confine ourselves to systems with only one particle in this
work.

The bath is represented by a set of linearly responding

(harmonic) modes {z,}

(2.3)

(2.4)

and the system-bath interaction is assumed to be of the
form

2

C,
Hy = Z —Cozqaq + & 5 a’q? .
= 2maows

(2.5)

A potential renormalization term has been added to Hy
to avoid an artificial shift in the potential of the bare sys-
tem due to the inclusion of dissipation [4]. For the model
Hamiltonian (2.1), the effects of the bath are captured
entirely by the spectral density [2]

2
J(w) = ’2—’ 3 mf:a 8w — wa) - (2.6)

In this paper, we will consider specifically the case
of frequency-independent damping (Ohmic dissipation)
with a high-frequency exponential cutoff
J(w) = (27hK /a*) w exp(—w/w.) , (2.7
where K is the dimensionless system-bath coupling con-
stant commonly referred to as the Kondo parameter [4,5].
One transport property of interest for this model is the
diffusion coefficient D. When the system dynamics is dif-
fusive, D is related to the equilibrium correlation function
of the displacement under zero external field (¢ = 0) by

D = a? lim ([q(t) — ¢(0)]*)/2dt , (2.8)
t—oo
where d is the dimensionality of the system, which is
equal to one here, and the angular brackets denote an
equilibrium Boltzmann average over the initial state of
the system.
In this work, we will not consider genuine equilib-
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rium experiments. Instead we will study a closely related
situation—that assuming a factorized initial state [3]. In
this experiment, the particle was prepared at time t =
0 at the origin j = 0, with the bath itself in a thermal
distribution characterized by a temperature T'. The dy-
namical quantity of interest is now the occupation prob-
ability P;(t) for finding the particle at site j after some
time ¢. In this experiment, the diffusion coefficient under
€ = 0 is given by

D = a® lim (g?(t))/2dt , (2.9)

t—oo

where the mean squared displacement is related to the
time-dependent occupation probabilities by (g*(t)) =
>;3*P;(t). It is important to point out that not all
dynamical quantities observed in this type of experi-
ment are necessarily identical to those observed in equi-
librium experiments, particularly those involving short-
time transient behaviors. However, for the present study,
since the diffusion coefficient depends only on the long-
J

time dynamics of the system, the precise manner in which
the system was prepared initially is not important [23],
and both initial conditions should yield the same diffu-
sion coefficient. Since the factorized initial condition is
somewhat easier to treat numerically, we only consider
factorized initial states in this work.

The time-dependent occupation probability of observ-
ing the particle at site n can be obtained using the influ-
ence functional method of Feynman and Vernon (3]

P(t) = / Dg / Dy’ exp{Sola(7)] + Shlg'(7)]}
x Fla(r),q'(7)] . (2.10)

where the path integrals denote a sum over all forward-
and reverse-time paths ¢(7),¢'(7) satisfying the bound-
ary conditions ¢(0) = ¢’(0) = 0 and ¢(¢) = ¢'(¢t) = n.
In Eq. (2.10), So and S§ denote the free actions of the
forward- and reverse-time paths, respectively, and F is
the influence functional

Fla(r)d (1) = o~ [ ar [ ar lar) = e = ryatr) = £ = ') = 2 [ artato)? - g r7)

where L(7) denotes the response function of the bath

weighted by the spectral density,

cosh([BR/2 — iT|w)
sinh(Bhw/2)

L(r) = :—; /0 ~ dw J(w) (2.12)

and the potential renormalization parameter is p =
(22 /7h) [ dwd(w)/w.
Switching to the sum and difference coordinates

q(r) +4'(7)

z(r) = 5 , y(r)=q(r) - ¢'(v), (2.13)

and integrating by-parts twice, we obtain
Flz(r),y(T)] = exp (A dr /OT dr' [y(r)S(r — )y(r")
+ 2iy(T)R(T — T'):i:('r')]) , (2.14)

where S and R are the real and imaginary parts of Q(7),
which is related to the L(7) function in Eq. (2.12) by
d?Q(7)/dr? = L(1); for an Ohmic spectral density (2.7),
this function can be evaluated exactly [9]. In terms of the
sum and difference coordinates, the path-integral repre-
sentation for P,(t) becomes

Pa(t) = / Dz / Dy exp(Sola(r), y(r)]) Flz(r), y(r)]
(2.15)

where we have collected the free actions for the forward-
and reverse-time paths into a single action Sp. The path
integrals now entail a sum over all paths z(7) and y(7)
[which are interdependent because of Eq. (2.13)] satisfy-

(2.11)

[
ing the boundary conditions z(0) = y(0) = y(¢t) = 0 and
z(t) =n.

To obtain a path-integral expression for the mean
squared displacement, one can introduce the generating
functional

Z(\t) = i e* P, (t) .

n=-—oo

(2.16)

The mean squared displacement is obtained from the gen-
erating functional via

(g3(t)) = 8%Z(X,t)/0A%|r=0 - (2.17)
Equation (2.17) together with Egs. (2.14)—(2.16) form the

basis for both the analytical calculations and the numer-
ical simulations discussed in the next sections.

III. PERTURBATION THEORY AND THE
NONINTERACTING BLIP APPROXIMATION

For high temperatures and/or strong damping, the
transport of the particle proceeds by incoherent tunnel-
ing from one well to a neighboring well. The diffusion
coefficient for such an incoherent stepwise transport can
be computed in terms of a master equation describing
the time-dependent occupational probability [22]. From
a solution of the master equation, an expression for the
diffusion coefficient can be derived in a straightforward
manner as in classical diffusion theory, giving for d =1

D =a’T, (3.1)

where I is the stepwise forward rate. For this kind of
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transport, the only difference between quantum and clas-
sical diffusion is the expression for the stepwise trans-
fer rate that enters the master equation. For incoherent
quantum diffusion, the quantum rate from the dissipative
two-state system is used, whereas for classical diffusion,
the Arrhenius rate is used. For a symmetric dissipative
two-state system, the forward rate at high temperatures
and/or strong dissipation is given by the golden rule for-
mula

oo

Tar = (A/2)2/ dre=Q) | (3.2)

—o0

In view of this, the expression for D in Eq. (3.1) ap-
pears to be simply the result of a perturbation theory to
second order in the tunneling matrix element. However,
Eq. (3.1) is more general than it appears. In the follow-
ing, we will briefly describe how Eq. (3.1) emerges from a
path-integral description of the system dynamics under a
simple but powerful approximation commonly called the
noninteracting-blip approximation (NIBA) [4]. The fol-
lowing discussion will follow closely that of Weiss et al.
[21] and will also serve to set up the notations used in
Sec. IV.

We begin by noticing that because of the tight-binding
nature of our lattice model, the particle makes instan-
taneous transitions between neighboring wells. Since
the two paths ¢(7) and ¢'(7) must end on the same
site, they must make a total of 2m jumps, where m =
0,1,2,.... Let the times at which these transitions occur
be t1,ts,...,tam. Changing variables from ¢, ¢’ to z,y as
J

2m—-1 2m
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in Eq. (2.13) one obtains

2m 2m
a(r) = @O —t),  y(r) =3 wO(r—t),

(3.3)

where O is the Heaviside function, and now z; = +1/2
and y; = +1. There is no constraint on the relation-
ship between z; and y; at the same time ¢;. In terms of
the “charges” [21] {z;} and {y;}, the influence functional
becomes

2m—1 2m
Flz,y] = exp( Z Z yeS(te — t5)y;
7=1 k=j+1

(3.4)

2m—1 2m
+2 Y Y ukR(k —tj)z]) :

7=1 k=j+1

The probability P,(t) is then obtained by first summing
over all possible charge configurations {z;} and {y;} with
the constraints y(0) = z(0) = y(t) = 0, z(t) = n, and
> ;9 =0 for paths with 2m transitions, followed by
a time-ordered integration over the possible transition
times {t,t2,...,t2m}, and finally a sum over all m.

Putting the expression for the influence functional
Eq. (3.4) into the generating functional Z(A,t) and sum-
ming over all possible charge configurations for {z;}, we
obtain (for € = 0)

2m—1 2m

oo ¢
Z(\t) = ZAzm/ DZm{ti}ZleXp Z Z YeS(te — t;)y; sinh% H sinh %-{-i Z yeR(tk — t5)|
m=0 o

{v:} i=1 k=j+1

where the prime on the {y;} summation indicates that
the sum is subject to the constraint Zj y; = 0 and the

symbol fot Dom{t;} denotes the time-ordered integration

over the transition times fot dtom fotz"‘ dtom—1- - Otz dt;.

If the transport occurs purely by incoherent stepwise
hopping between neighboring wells, the y charges can be
grouped into pairs (y2;-1,¥2;), and within each pair the
two y charges must have opposite signs so that the sys-
tem returns to a diagonal state after every two transitions
[21,22]. Each pair of y-charges can be thought of pictori-
ally as a “dipole.” The second step in the noninteracting-
blip approximation is then to assume that all interdipole
interactions are zero [4]. The NIBA has been found to be
a very useful approximation in the case of the dissipative
two-state system [4,8,9]. For the spin-boson model, the
assumption of noninteracting dipoles is justified in sev-
eral physically quite distinct limits and the NIBA seems
to give accurate predictions between these limits. The
essential difference between the two-state and the mul-
tistate system is that the multistate system will not al-
ways return to a diagonal state after every two transi-
tions whereas the two-state system is forced to do so by

j=1 k=j+1

(3.5)

‘the boundary conditions. Because of this difference, the
NIBA may not necessarily yield a good approximation for
the multistate dynamics in the same parameter region.
Now we summarize briefly the results of applying the
NIBA to the multistate system [21,22]. Within the
NIBA, the integrand of the generating functional fac-
torizes into products of dipolar contributions. Realizing
that all terms in Eq. (3.5) corresponding to m # 1 do not
contribute to the second moment, we find from Eq. (2.17)

(qz(t)) = A2 /Ot dr e_Q(T)(t -7), (3.6)

which in the large t limit reduces to the golden rule result
(3.1) with (3.2). Therefore, for a strict Ohmic spectral
density [Eq.(2.7) with w. — oo], the NIBA predicts a
power-law temperature dependence D ~ T?K-1 for all
K and T [22]. The golden rule is manifestly the result of
a perturbation theory to order A2. However, the above
shows that the golden rule is actually equivalent to the
NIBA, which rests on two assumptions: (1) the trans-
port is incoherent, i.e., the tunneling path returns to a
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diagonal state after every two transitions, and (2) the in-
terdipole interactions are zero. These two assumptions
are expected to be valid in the high temperature and/or
strong dissipation limit.

For the case K = 0, assumption (1) is of course not
satisfied, but assumption (2) is now exact. Because of
this, Eq. (3.6) becomes ezact for K = 0. A straightfor-
ward calculation for the bare system confirms that this
is indeed true

(@(0) = Y n(nle~ /o)
» = Zn2|I]n|(iAt)|2

— (At)?/2, (3.7)
where I,,(z) is the modified Bessel function [27]. Conse-
quently, the NIBA result (3.6) coincides with the exact
mean squared displacement (3.7). We should emphasize
here that for the bare system, transport is superdiffusive
as indicated by Eq. (3.7). Under the usual definition for
the diffusion coefficient, D would be infinite.

Given that the NIBA is exact for K = 0 as well as being
a good approximation for the incoherent (high T' and/or
large K) limit, one may wonder if it would also provide a
reasonable approximation for small-to-intermediate val-
ues of K and low temperatures. One can answer this
question by studying the T = 0 behavior of the diffusion
coefficient for 0 < K < 1/2. First, the golden rule result
Eq. (3.2) implies that D — oo as T' — 0. However, while
the A? contribution to D in the golden rule diverges as
T — 0, the diffusion coefficient should go to zero for all
K > 0. This expectation is based on the aforementioned
duality between the tight-binding and the weak corruga-
tion model [17,19]. Therefore the NIBA, while being ex-
act for K = 0, must have a zero radius of convergence in
K. Hence the NIBA must be qualitatively incorrect for
small-to-intermediate values of K at low temperatures,
and this we will indeed observe from the QMC results
described below.

IV. STOCHASTIC METHOD FOR SAMPLING
REAL-TIME PATH INTEGRALS

We have argued that the NIBA is not able to pro-
vide correct results for intermediate values of K at low

Z(A,t)=ZIeXP Zykskjyj Z,,HGgm)(xi’yf)exP ’\Z"’J”L%
i

{y} i<k {=} 3

temperatures. To obtain results for this nonperturbative
parameter region, we resort to Monte Carlo techniques.
The MC method used to compute the diffusion coeffi-
cient is based also on the path-integral formula of Sec. II.
To formulate the MC algorithm, we first “discretize” the
paths by allowing transitions only at evenly spaced grid
points on the time axis: t1,t3,...,tn, where t; = it
and 6t = t/N. For a numerical evaluation, N has to be
kept finite and convergence to the N — oo limit will be
verified at the end by carrying out the simulation for in-
creasing values of N. After discretization, the influence
functional becomes

Fl{z:}, {vil = exp | D ukSkjy; + 2 Y veRejz; |
i<k i<k

(4.1)
where Skj = S(tk - tj) and Rkj = R(tk - tj). The free

action in Eq. (2.15) is given by a product of free short-
time propagators

N
exp Sol{z:}, {u:}] = H Go(z;,95) (4.2)
with
Go(:L‘, y) = Ilz+y/2|(iAt$t) I|z_y/2|(—'l:A(5t) . (43)

In the discretized version, we make use of the following
expansion [27] of the modified Bessel function for small

|2l

(4.4)

in order to replace the exact free propagator by an mth
order approximate propagator G((,m) = Go + O(st™*1).
Table I gives explicitly the formula for a second-order
(m=2) approximate propagator, but the respective ex-
pressions for other orders can be obtained in straightfor-
ward ways using Egs. (4.3) and (4.4). In practice, it is
sufficient to use m = 2.

The generating functional takes on the discretized form

2

-1 N

:E]' Z Rkjyk , (45)
1 k=j+1

J

where the prime on the y configurational sum indicates that the sum over the {y;} charges is subject to the following

N

constraints: (1) for every ¢, y; is an integer and |y;| < m and (2) Y .-,y = 0. The double prime on the z

configurational sum indicates that the sum over the {z;} charges is subject to the following constraints: (1) for every
i, 2xz; is an integer; (2) given y;, |z; + ¥i/2| + |z: — y:/2| < m; and (3) vazl z; is an integer. Then given any {y;}
configuration, the sum over {z;} can be performed exactly giving



2002 C. H. MAK AND REINHOLD EGGER 49

i<k

Z(At) =

) [T; G™y;, (A + 25)]

i<k

where G(™)(y,z) = 37 G(()m)(a:,y)e“ with

. N .
= { 20 i1 By, 5 <N
J

bl

> (o) €XP (Z ykSkjyj> [1; G™ (v, 2;)

: (4.6)

Ty (4.7)

and the G(™) function for m = 2 is given in Table II. The denominator in Eq. (4.6) is equal to unity and has been
added to bring Eq. (4.6) into a form that is suitable for MC sampling.
Twice differentiating the generating functional in Eq. (4.6) with respect to A and taking the limit A — 0 finally

yields the expression for the mean squared displacement

-t Zl exp Z YuSk; Y5

{v:} i<k

N

II 6™ wiz) Y ™"y,

1=M+1

(@*(tar)) = Z(0,1)

”.ME

where Z(0,t) is just the denominator in Eq. (4.6),
Gm'(y,z) = 8G™(y,2)/8z, and G™'"(y,z) =
02G(™)(y,2)/82%. Notice that Eq. (4.8) applies to all
intermediate times tp; with M < N, the number of dis-
cretizations. Consequently, all intermediate time points
can be sampled simultaneously in one single simulation.

At this point, the stochastic sampling of the mean
squared displacement should proceed in a straightfor-
ward manner following Eq. (4.8). The most obvious
way to carry out the MC sampling is to use the factor
expy. j<k YkSk;y; as the weight function and sample the
configurations {y;}, accumulating the rest of the factors
in the numerator and the denominator separately. How-
ever, there is a problem with this approach — when the
magnitude of the system-bath coupling is small, the fac-
tor exp Z]<k YrSkjy; produces no weighting and hence
the sampling is highly inefficient for small K. In view of
this, one may then attempt to use the absolute value of
the denominator as the weight (since the entire denomi-
nator is not necessarily positive definite). Unfortunately,
there is another more subtle problem with this alterna-
tive approach.

TABLE I. Allowed values of z; corresponding to a given y;
and the corresponding second-order approximate free propa-
gators.

G (2, 1)

Yi T
2 +1 —(A8t/2)%/2
0 (Ast/2)?
1 +1/2 +iAS8t/2
+1 (Adt/2)?
0 1 - 2(Adt/2)?
-1 +1/2 FiASt/2
-2 +1 —(Adt/2)%/2

0 (ASt)2)?

H Gy, z)| »

1=1#j3,k

"(y5,25)G™ (yk, 21)

M M

z) [I 6™ (w,2)

j=1 I1=1#j

(4.8)

f

This difficulty arises when charge configurations that
contribute to the numerator and denominator in Eq. (4.8)
are almost mutually exclusive (a simple example is the
case K = 0). Using the absolute magnitude of the de-
nominator as the weight causes ergodicity problem for
the MC sampling, since most of the configurations that
are important for the denominator may not contribute to
the numerator. Fortunately, this problem can be solved
by standard methods of importance sampling [28]. To
this end, we first rewrite the Monte Carlo problem in the
following schematic form

Y g Pod _ ¥y, Pol Al expliarg(4)]
Z,{yi}PoB Z/{yi}Po|B|exp[iarg(B)] ’
(4.9)

(¢ (tm)) =

where P, represents the factor exp Ej<k Y Sk,
A = Z;V:I G(z)”(yj, z;) Hl;éj G® (yi,21) + Zj;ﬁk
G(2)l(yja zj) G(z)’(yk’zk) Hl;éj,k G(Z)(yhzl) and B =

H;V:l G®@(y,, 2;) represent the remaining factors in the
numerator and denominator, respectively. We can then
reexpress Eq. (4.9) in the equivalent form

@ = (e /e

where the angular brackets denote averages over the
weight function P = (|A| + |B|) Po.

(4.10)

TABLE II. Definitions of the second-order G functions.

Yi G(Z)(yhz)

+2 (A8t/2)%(1 — cosh z)

+1 +2i(Adt/2) sinh z/2

0 1 — 2(A6t/2)* + 2(At/2)? cosh z
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Two types of Monte Carlo moves were used in the
simulations. The first was a double charge Metropolis
move involving a pair of charges moved in opposite di-
rections in order to maintain the charge neutrality con-
straint 3, y; = 0. These moves have relatively low ac-
ceptance ratio, especially for large K, generally less than
10%. The second type of MC move is a charge migration
move in which two neighboring charges are exchanged,
effectively translating charges along the chain. These
moves have high acceptance ratio (=~ 50%), but by them-
selves, they do not generate ergodic behavior. For the
QMC simulation results presented here, anywhere from
10000 to 100000 samples were collected. Typically N
= 18 to 30 discretizations were used for a maximum real
time At = 9.6, and the code performs at an average speed
of approximately 12 CPU minutes per 10000 passes on
an IBM RISC 6000 Model 580. In all of our calculations,
we verify convergence by systematically increasing the
discretization N until the results do not vary by larger
than the statistical error.

To conclude this section, we give a simple argument
as to why this method is able to circumvent the sign
problem. The crucial step is the transformation to sum
and difference coordinates in Eq. (2.13). The z(7) can
be thought of as quasiclassical variables corresponding
to the diagonal elements of the time-dependent reduced
density matrix, whereas the y(7) represents quantum
fluctuations which are related to the off-diagonal ele-
ments of the density matrix [26]. (We note that a similar
idea leads to the Wigner function formalism which has
been applied to the dual weak corrugation model by Chen
et al. [25].) With regard to the numerical treatment pre-
sented here, the fact that the quasiclassical paths can be
integrated out analytically provides enormous advantage.
As aresult, we are left with a stochastic sampling over the
quantum fluctuations alone and the influence functional
then provides a natural weight for intermediate-to-strong
damping. This method is related to the original filtering
approach (7], but is much more useful for dissipative sys-
tems since it fully exploits the symmetry properties of
the influence functional [21]. A similar algorithm can be
used to compute the mobility of the dissipative multistate
system, which is sketched in the Appendix.

V. RESULTS AND DISCUSSIONS

In this section we present numerical results obtained
from the dynamical simulations described in the preced-
ing section. Figure 1 shows QMC results for the mean
squared displacement (g%(t)) as a function of time for the
bare multistate system, K = 0. For the data shown in
Fig. 1, N = 24 discretizations were used and 20000 MC
samples were collected, with five passes in between every
pair of samples. As expected, the transport is superdiffu-
sive, indicated by the ¢* dependence of the mean squared
displacement. Figure 1 shows that the numerical results
are in good agreement with the exact solution, indicated
by the solid line.

Figure 2(a) shows typical results for the mean squared
displacement for K = 1/4 at several temperatures 7'. For
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FIG. 1. Mean squared displacement (g*(t)) for the bare
multistate system (K = 0) generated by QMC simulations
(circles). The solid line represents the exact result.

all temperatures studied, the mean squared displacement
exhibits an inertial behavior at short times, but at longer
times the transport becomes diffusive for all K > 0, and
(¢%(t)) ~ t. Figure 2(b) shows results for K = 5/4 and
the same temperatures. A comparison between Figs. 2(a)
and 2(b) reveals that for larger system-bath coupling K
(and/or higher temperatures), the diffusive behavior gen-
erally develops sooner. Also note the difference in the
scales for {g?(t)) in Figs. 2(a) and 2(b). The diffusion
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FIG. 2. Mean squared displacement for w. = 5A and (a)
K =1/4 and (b) K = 5/4 at several temperatures: kgT/hA
= 0.156 (dotted line), 0.625 (dashed line), 2.5 (dot-dashed
line), and 5 (solid line).
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coefficient of the particle is in general smaller for larger
K.

The mean squared displacement has been computed for
a variety of system-bath coupling parameters K at dif-
ferent temperatures. The resulting diffusion coefficients,
obtained from the best linear fit to the tail of each mean
squared displacement, are shown in Figs. 3(a)-3(e) for K
=1/8,1/4,1/2, 3/4, and 7/8 and in Figs. 4(a) and 4(b)
for K = 1 and 5/4. The solid line in each figure indicates
the NIBA prediction for the diffusion coefficient. For all
values of K, the diffusion coefficient is well approximated
by the NIBA at high temperatures. This observation
confirms the earlier assertion that for high temperatures,
the transport proceeds entirely by incoherent tunneling
between nearest-neighbor wells whose stepwise hopping
rate is given by the golden rule formula for the truncated
two-state system.

Although the NIBA works well for high temperatures,
large deviations are observed at low temperatures for
K < 1. The NIBA predicts that D ~ T?K-1 as T — 0,

which would imply a divergent diffusion coefficient for
K < 1/2. On the contrary, the MC results in Figs. 3(a)
and 3(b) show clearly that for K < 1/2, D goes to zero
as T — 0, and the diffusion coefficient exhibits a non-
monotonic temperature dependence. Starting from the
high-temperature end, the diffusion coefficient increases
with decreasing temperature and reaches a pronounced
maximum, after which it decreases again with T', going to
D(T = 0) = 0 approximately linearly with T' [21]. These
results indicate that in the low-temperature region the
NIBA (or the equivalent golden rule) are qualitatively
incorrect.

For 1/2 < K < 1, the NIBA again predicts that D
vanishes with a T2K-! power law as T — 0. At first
sight, the numerical results in Figs. 3(d) and 3(e) seem
to suggest that the NIBA behavior may be correct for
low temperatures. Unfortunately, the QMC data for the
diffusion coefficient are not accurate enough at the low-
temperature limit to prove or disprove the T2X~1 power
law. To decide whether it is correct in this region, we
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refer to our earlier QMC results for the linear mobility
w; [11]. Using the method outlined in the Appendix, the
linear mobility for the same model has been computed
at low temperatures for several values of K < 1. For
all K < 1, it was found that u; has the universal low-
temperature form [21]

w(T) = (T = 0) —dT?, (5.1)

where d is a nonuniversal positive prefactor. Combined
with the Einstein relation y;(T) = D(T)/kT, this implies
that the asymptotic low-temperature behavior of the dif-
fusion coefficient is of the form

D(T) = ClT - C3T3 3 (52)

so that D(T) ~ T as T — 0 for all K < 1. Applying this
result to the region 1/2 < K < 1, we see that the pertur-
bative result again predicts an incorrect low-temperature
behavior of D, although it gives the correct limiting value
D(T —-0)=0.

We note that the diffusion coefficient can be com-
puted exactly in a nonperturbative manner at all tem-
peratures for the special value K = 1/2 [21]. This an-
alytical computation confirms the temperature depen-
dence of D as outlined above quantitatively and demon-
strates the breakdown of the NIBA at low tempera-
tures [29]. A simple estimate for the “Kondo temper-
ature” Tk, which separates the perturbative from the
nonperturbative region is given by Tx = il .g/ks, where
Aeg = A(A/w)K/(=K) " For temperatures below Tk,
the NIBA predictions are qualitatively incorrect. The

Kondo temperature also provides a rough estimate for
the position of the maximum of D(T) in the region
0< K <1/2.

Figures 3(d) and 3(e) show that for 1/2 < K < 1, the
maximum that existed for K < 1/2 has now almost dis-
appeared. Indeed, the T?X—! power law should hold for
arbitrarily high temperatures in the case of strict Ohmic
damping (w. — o0), and therefore, D is expected to
increase monotonically with temperature for K > 1/2.
However, Figs. 3(d) and 3(e) show that a weak maximum
remains even for K > 1/2. For a resolution of this ap-
parent discrepancy, we note that a finite cutoff frequency
w. has been used in the simulations and therefore the
T?K-1 law is modified by a universal T~/2 dependence
for temperatures well above Aw./kp [24,30]. As a con-
sequence, the (rather broad) maxima in Figs. 3(d) and
3(e) are most likely results of the finite cutoff frequency
w. = 5A employed in our study. We have performed
additional simulations using a larger w. = 10A, and the
MC results, shown in Figs. 5(a) and 5(b), indicate that
the maximum has now completely disappeared from the
temperature range studied. But with any finite w,, at
high enough temperatures the T~1/2 tail will eventually
set in again.

The MC results in Figs. 3(a)—(e) indicate that the
NIBA predictions are accurate at high temperatures but
grossly incorrect at low temperatures. This implies that
while both assumptions of the NIBA are correct for high
temperatures, at least one of the two assumptions is vio-
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(b) K = 7/8 and a larger cutoff frequency w. = 10A. The
FIG. 4. The same as Fig. 3, but for (a) K = 1 and (b) maxima present in Figs. 3(d) and 3(e) for a smaller w. = 5A
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lated for temperatures below Tk. One might then specu-
late on exactly why the NIBA fails for low temperatures.
First, we note that our previous QMC results [7-9] for
the spin-boson model indicate that the NIBA is quan-
titatively accurate for a (symmetric) two-state system
with Ohmic dissipation in almost all parts of parameter
space for a large enough cutoff frequency. In the case of
a two-state system, the system must return to a diag-
onal state after every two transitions; hence the NIBA-
assumption (1) is automatically satisfied. In view of this
and the fact that the NIBA seems to be accurate for
the two-state system, we would expect the NIBA to give
reasonable results for the multistate system as long as as-
sumption (1) is justified. Therefore our QMC results for
temperatures below Tk as well as earlier analytical cal-
culations [19,21] suggest that assumption (1) is violated
for the multistate system at low temperatures, implying
that the low-temperature transport is coherent for K < 1.
In other words, if the NIBA prediction is accurate for the
two-state system in a particular region on the 7-K plane,
then any deviation from the NIBA approximation for the
multistate system in the same region on the T-K plane
indicates that the motion is coherent.

Next we briefly examine the QMC results for K > 1
shown in Figs. 4(a) and 4(b). Here the NIBA is es-
sentially exact for all temperatures and the transport
is always incoherent [22]. As temperature is increased
from T = 0, the diffusion coefficient increases with the
NIBA power law D(T) ~ T?X~1; however, due to a finite
cutoff frequency, D(T) will exhibit a maximum around
T' =~ hw./kp (the exact value for T’ depends on K
as well), and finally decreases like T ~1/2 in the high-
temperature end.

The MC results from Figs. 3 and 4 are summarized in
Fig. 6 on the T-K plane, in which we have used open
diamonds to denote coherent transport and closed circles
to denote incoherent transport, defined according to the
criterion above. Since this criterion is a rather qualita-
tive one, the phase diagram in Fig. 6 can only provide
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FIG. 6. Phase diagram for the coherent-incoherent transi-
tion for w. = 5A. Open diamonds indicate coherent transport
and closed circles indicate incoherent transport (using the cri-
terion discussed in the text). The dashed line indicates that
above K = 1 the transport is incoherent for all temperatures.
The solid line is the Kondo temperature Tk.
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a rough estimate for the dynamic “phase transition” be-
tween coherent and incoherent transport. In addition,
the results presented here were obtained for a finite cut-
off w. = 5A, and the phase boundary may be somewhat
different for a strict Ohmic bath. The Kondo tempera-
ture Tk is shown as the solid curve in Fig. 6. Tk, as we
have discussed previously, separates the nonperturbative
region from the perturbative region, and it may be used
as a crude estimate for the phase boundary. Clearly,
there are discrepancies between this estimate and the
coherent-incoherent boundary obtained from the QMC
data. These discrepancies are certainly due to the ad hoc
criterion we have employed to define the phase boundary
and the finite cutoff used in the simulation. However,
the qualitative picture emerging from our simulations is
clear: for K > 1, the transport is incoherent for all tem-
peratures, while for K < 1, the transport is coherent for
low temperatures and eventually turns incoherent at a
sufficiently high temperature.

VI. CONCLUSIONS

Real-time Monte Carlo methods have been used to
study diffusion on a one-dimensional tight-binding lat-
tice with Ohmic dissipation. The simulations confirm
the overall picture for the behavior of the diffusion coef-
ficient as a function of temperature and friction obtained
from previous studies. For 0 < K < 1, the transport is
coherent at low temperatures and becomes incoherent at
a sufficiently high temperature. For K > 1, the transport
is always incoherent. In the incoherent region, the tem-
perature dependence of the diffusion coefficient is well de-
scribed by the noninteracting-blip approximation, which
yields results identical to perturbation theory. The diffu-
sion coefficient increases monotonically with temperature
for K > 1/2 (provided the cutoff frequency is sufficiently
large), whereas for 0 < K < 1/2, the diffusion coefficient
first rises with temperature, goes through a pronounced
maximum, and then decreases with further increase in
temperature. We believe that our simulation method
provides a powerful approach to the study of transport
properties of this model. Interesting (and straightfor-
ward) extensions of this work may be used to deal with
the problem of a dissipative tight-binding model with
more than one particle, or to study non-Ohmic dissipa-
tion and the effects of an external bias.
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APPENDIX: QMC ALGORITHM FOR THE
MOBILITY

In this appendix, we briefly summarize the stochastic
algorithm for calculating the nonlinear mobility [11]. We
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consider the same Hamiltonian (2), but now the external
bias € is nonzero. Again we assume that the system is
prepared in a factorized initial state with the particle
at ¢ = 0. Under the bias, the particle will move in the
direction of the gradient of the external field; in the long-
time limit, the displacement of the particle (g(t)) grows
linearly with ¢ and the mobility is defined by

p= Jim (a(0)/et (A1)

The time-dependent occupation probability is given by
Eq. (2.15), but now the integrand is modified by an ad-
ditional factor Cy(t)] = exp|ie fot dry(7)] due to the bias.
With this, the generating functional Z.(A,t) (the sub-
script is added to remind us that the external bias is
nonzero) is given by Eq. (2.16) and the displacement is
related now to the first moment of Z(\,t).

After transformation to the charge picture and the dis-
cretization, the generating functional takes on the same
form as Eq. (4.5), but there is an additional factor

N
Cc({y:}) = exp —ie&tz_jyj (A2)

i=1

coming from the bias. Again, the {z;} charges can be
traced out exactly since the bias-dependent factor does
not contain any z;. Equation (4.6) remains true, but
with the factor C.({y;}) appearing in the summand in
both the numerator and the denominator. Differentiating
this with respect to A gives the first moment for any
intermediate time tp; <t

(altan)) = Z0,)7*Y exp | S wSkjus

{v:i} i<k

M
< Cllu D) X |6 (15,5)

i=1

M
X H G(Z)(yl’zl)]a (A3)

I=1#]

where Z,(0,t) is the denominator of Eq. (4.6) including
the bias factor (A2). The Monte Carlo algorithm imme-
diately follows from Eq. (A3) and can be written in the
following schematic form:

2I{!J-'}P(]AC‘

(attan) = S

(A4)

where similar to Eq. (4.9) the factor P, again represents
exp(EKk Y& Sk;jyj). Furthermore, A and B are the re-
maining bias-independent factors in the numerator and
the denominator, respectively. Using the same impor-
tance sampling method described in Sec. IV, the first
moment is expressed as the ratio of two stochastic aver-
ages over the distribution P = (|4| + |B|) Po,

Note that in Eq. (A5) the distribution function is inde-
pendent of the external bias €; therefore, the nonlinear
mobility for any number of different ¢ can be computed
from one single Metropolis trajectory. This feature al-
lows one to conveniently compute the linear mobility y,
(which is the € — 0 limit of the nonlinear mobility) by
calculating the nonlinear mobility for several values of ¢
in the same Monte Carlo simulation and then extrapo-
lating to € — 0.
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